Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(39): e2302878120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722058

RESUMO

Although tumor-intrinsic fatty acid ß-oxidation (FAO) is implicated in multiple aspects of tumorigenesis and progression, the impact of this metabolic pathway on cancer cell susceptibility to immunotherapy remains unknown. Here, we report that cytotoxicity of killer T cells induces activation of FAO and upregulation of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme of FAO in cancer cells. The repression of CPT1A activity or expression renders cancer cells more susceptible to destruction by cytotoxic T lymphocytes. Our mechanistic studies reveal that FAO deficiency abrogates the prosurvival signaling in cancer cells under immune cytolytic stress. Furthermore, we identify T cell-derived IFN-γ as a major factor responsible for induction of CPT1A and FAO in an AMPK-dependent manner, indicating a dynamic interplay between immune effector cells and tumor targets. While cancer growth in the absence of CPT1A remains largely unaffected, established tumors upon FAO inhibition become significantly more responsive to cellular immunotherapies including chimeric antigen receptor-engineered human T cells. Together, these findings uncover a mode of cancer resistance and immune editing that can facilitate immune escape and limit the benefits of immunotherapies.


Assuntos
Carnitina O-Palmitoiltransferase , Neoplasias , Humanos , Carnitina O-Palmitoiltransferase/genética , Citotoxicidade Imunológica , Ácidos Graxos , Metabolismo dos Lipídeos , Neoplasias/terapia , Linfócitos T Citotóxicos
2.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(8): 855-863, 2023 Aug 15.
Artigo em Chinês | MEDLINE | ID: mdl-37668035

RESUMO

OBJECTIVES: To study the effect of gut microbiota on hematopoiesis in a neonatal rat model of necrotizing enterocolitis (NEC). METHODS: Neonatal Sprague-Dawley rats were randomly divided into a control group and a model group (NEC group), with 6 rats in each group. Formula milk combined with hypoxia and cold stimulation was used to establish a neonatal rat model of NEC. Hematoxylin and eosin staining was used to observe the pathological changes of intestinal tissue and hematopoiesis-related organs. Routine blood tests were conducted for each group. Immunohistochemistry was used to observe the changes in specific cells in hematopoiesis-related organs. Flow cytometry was used to measure the changes in specific cells in bone marrow. 16S rDNA sequencing was used to observe the composition and abundance of gut microbiota. RESULTS: Compared with the control group, the NEC group had intestinal congestion and necrosis, damage, atrophy, and shedding of intestinal villi, and a significant increase in NEC histological score. Compared with the control group, the NEC group had significantly lower numbers of peripheral blood leukocytes and lymphocytes (P<0.05), nucleated cells in the spleen, thymus, and bone marrow, and small cell aggregates with basophilic nuclei in the liver (P<0.05). The NEC group had significant reductions in CD71+ erythroid progenitor cells in the liver, CD45+ lymphocytes in the spleen and bone marrow, CD3+ T lymphocytes in thymus, and the proportion of CD45+CD3-CD43+SSChi neutrophils in bone marrow (P<0.05). There was a significant difference in the composition of gut microbiota between the NEC and control groups, and the NEC group had a significant reduction in the abundance of Ligilactobacillus and a significant increase in the abundance of Escherichia-Shigella (P<0.05), which replaced Ligilactobacillus and became the dominant flora. CONCLUSIONS: Multi-lineage hematopoietic disorder may be observed in a neonatal rat model of NEC, which may be associated with gut microbiota dysbiosis and abnormal multiplication of the pathogenic bacteria Escherichia-Shigella.


Assuntos
Enterocolite Necrosante , Microbioma Gastrointestinal , Doenças do Recém-Nascido , Ratos , Animais , Enterocolite Necrosante/etiologia , Ratos Sprague-Dawley , Animais Recém-Nascidos
3.
Int Immunopharmacol ; 123: 110734, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37541108

RESUMO

BACKGROUND: Drug (e.g., acetaminophen, APAP)-associated hepatotoxicity is the major cause of acute liver failure. Emerging evidence shows that initial tissue damage caused by APAP triggers molecular and cellular immune responses, which can modulate the severity of hepatoxicity. The pro-inflammatory and cytotoxic cytokine interferon (IFN)-γ has been reported as a key molecule contributing to APAP-induced liver injury (AILI). However, its cellular source remains undetermined. RESULTS: In the current study, we show that elevation of serum IFN-γ in patients with drug hepatotoxicity correlates with disease severity. Neutralization of IFN-γ in a mouse model of AILI effectively reduces hepatotoxicity. Strikingly, we reveal that IFN-γ is expressed primarily by hepatic neutrophils, not by conventional immune cells with known IFN-γ-producing capability, e.g., CD8+ T cells, CD4+ T cells, natural killer cells, or natural killer T cells. Upon encountering APAP-injured hepatocytes, neutrophils secrete cytotoxic IFN-γ further causing cell stress and damage, which can be abrogated in the presence of blocking antibodies for IFN-γ or IFN-γreceptor. Furthermore, removal of neutrophils in vivo substantially decreases hepatic IFN-γ levels concomitantly with reduced APAP hepatotoxicity, whereas adoptive transfer of IFN-γ-producing neutrophils confers IFN-γ-/- mice susceptibility to APAP administration. CONCLUSIONS: Our findings uncover a novel mechanism of neutrophil action in promoting AILI and provide new insights into immune modulation of the disease pathogenesis.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Animais , Camundongos , Acetaminofen/toxicidade , Interferon gama/farmacologia , Neutrófilos , Linfócitos T CD8-Positivos , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado/patologia , Camundongos Endogâmicos C57BL
4.
Environ Sci Pollut Res Int ; 30(32): 78097-78107, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37266770

RESUMO

The reduction of carbon emissions has become an important climate issue worldwide. However, the diversity of carbon trading systems and the differentiation policy may generate incomparable carbon abatement costs across regions and countries. Based on the nonparametric model, this paper investigates the shadow price of carbon emissions and energy structure in 38 Asian countries from 1991 to 2019. The main findings of this paper are as follows: (1) The annual average shadow price of carbon emissions experienced a fluctuating decline for Asian countries during the period 1991-2000, followed by a continuous rise and then a fluctuating decline. (2) Industrialization may lead to a decline in carbon shadow price, while urbanization may lead to a rise in the opportunity cost of carbon reduction. (3) The carbon shadow price in countries of Asia-Pacific Economic Cooperation (APEC) is lower than that in non-APEC countries. (4) The structure of energy consumption is negatively related to marginal abatement costs, while on the contrary, the coefficients of the level of human resources are significantly positive. We also derive corresponding policy measures to promote intra-regional emission reduction.


Assuntos
Dióxido de Carbono , Carbono , Humanos , Carbono/análise , Dióxido de Carbono/análise , Ásia , Desenvolvimento Econômico , Políticas
5.
Am J Reprod Immunol ; 90(1): e13711, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37157925

RESUMO

Gestational diabetes mellitus (GDM) is currently the most common metabolic complication during pregnancy, with an increasing prevalence worldwide. Maternal immune dysregulation might be partly responsible for the pathophysiology of GDM. Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of cells, emerging as a new immune regulator with potent immunosuppressive capacity. Although the fate and function of these cells were primarily described in pathological conditions such as cancer and infection, accumulating evidences have spotlighted their beneficial roles in homeostasis and physiological conditions. Recently, several studies have explored the roles of MDSCs in the diabetic microenvironment. However, the fate and function of these cells in GDM are still unknown. The current review summarized the existing knowledges about MDSCs and their potential roles in diabetes during pregnancy in an attempt to highlight our current understanding of GDM-related immune dysregulation and identify areas where further study is required.


Assuntos
Diabetes Gestacional , Células Supressoras Mieloides , Neoplasias , Gravidez , Feminino , Humanos , Diabetes Gestacional/metabolismo , Homeostase , Microambiente Tumoral
6.
Biochem Biophys Rep ; 34: 101436, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36824069

RESUMO

Erb-b2 receptor tyrosine kinase 2 (ErbB2) is an oncogene that frequently overexpressed in a subset of cancers. Anti-ErbB2 therapies have been developed to treat these types of cancers. However, less is known about how anti-ErbB2 drugs affect the trafficking and degradation of ErbB2. We demonstrate that the reversible and irreversible tyrosine kinase inhibitors (TKIs) differentially modulate the subcellular trafficking and downregulation of ErbB2. Only the irreversible TKIs can induce the loss of ErbB2 expression, which is not dependent on proteasome or lysosome. The irreversible TKIs promote ErbB2 endocytosis from plasma membrane and enhance the ErbB2 accumulation at endosomes. The endocytosis of ErbB2 is mediated by a dynamin-dependent but clathrin-independent mechanism. Blocking of ErbB2 endocytosis can impair the TKI-induced ErbB2 downregulation.

7.
Front Immunol ; 14: 1118781, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793731

RESUMO

We have previously demonstrated that scavenger receptor A (SRA) acts as an immunosuppressive regulator of dendritic cell (DC) function in activating antitumor T cells. Here we investigate the potential of inhibiting SRA activity to enhance DC-targeted chaperone vaccines including one that was recently evaluated in melanoma patients. We show that short hairpin RNA-mediated SRA silencing significantly enhances the immunogenicity of DCs that have captured chaperone vaccines designed to target melanoma (i.e., hsp110-gp100) and breast cancer (i.e., hsp110-HER/Neu-ICD). SRA downregulation results in heightened activation of antigen-specific T cells and increased CD8+ T cell-dependent tumor inhibition. Additionally, small interfering RNA (siRNA) complexed with the biodegradable, biocompatible chitosan as a carrier can efficiently reduce SRA expression on CD11c+ DCs in vitro and in vivo. Our proof-of-concept study shows that direct administration of the chitosan-siRNA complex to mice promotes chaperone vaccine-elicited cytotoxic T lymphocyte (CTL) response, culminating in improved eradication of experimental melanoma metastases. Targeting SRA with this chitosan-siRNA regimen combined with the chaperone vaccine also leads to reprogramming of the tumor environment, indicated by elevation of the cytokine genes (i.e., ifng, il12) known to skew Th1-like cellular immunity and increased tumor infiltration by IFN-γ+CD8+ CTLs as well as IL-12+CD11c+ DCs. Given the promising antitumor activity and safety profile of chaperone vaccine in cancer patients, further optimization of the chitosan-siRNA formulation to potentially broaden the immunotherapeutic benefits of chaperone vaccine is warranted.


Assuntos
Vacinas Anticâncer , Quitosana , Melanoma Experimental , Camundongos , Animais , Células Dendríticas , Quitosana/metabolismo , Antígenos/metabolismo , Chaperonas Moleculares , Interferon gama/metabolismo , Interleucina-12/metabolismo , Receptores Depuradores/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
8.
Hepatology ; 78(1): 45-57, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632993

RESUMO

BACKGROUND AND AIM: Drug-induced liver injury occurs frequently and can be life threatening. Although drug-induced liver injury is mainly caused by the direct drug cytotoxicity, increasing evidence suggests that the interplay between hepatocytes and immune cells can define this pathogenic process. Here, we interrogate the role of the pattern recognition scavenger receptor A (SRA) for regulating hepatic inflammation and drug-induced liver injury. APPROACH AND RESULTS: Using acetaminophen (APAP) or halothane-induced liver injury models, we showed that SRA loss renders mice highly susceptible to drug hepatotoxicity, indicated by the increased mortality and liver pathology. Mechanistic studies revealed that APAP-induced liver injury exaggerated in the absence of SRA was associated with the decreased anti-inflammatory and prosurvival cytokine IL-10 concomitant with excessive hepatic inflammation. The similar correlation between SRA and IL-10 expression was also seen in human following APAP uptake. Bone marrow reconstitution and liposomal clodronate depletion studies established that the hepatoprotective activity of SRA mostly resized in the immune sentinel KCs. Furthermore, SRA-facilitated IL-10 production by KCs in response to injured hepatocytes mitigated activation of the Jun N-terminal kinase-mediated signaling pathway in hepatocytes. In addition, supplemental use of IL-10 with N -acetylcysteine, only approved treatment of APAP overdose, conferred mice improved protection from APAP-induced liver injury. CONCLUSION: We identify a novel hepatocyte-extrinsic pathway governed by the immune receptor SRA that maintains liver homeostasis upon drug insult. Giving that drug (ie, APAP) overdose is the leading cause of acute liver failure, targeting this hepatoprotective SRA-IL-10 axis may provide new opportunities to optimize the current management of drug-induced liver injury.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Halotano , Hepatócitos , Receptores Depuradores , Receptores Depuradores/metabolismo , Animais , Camundongos , Acetaminofen/toxicidade , Halotano/toxicidade , Fígado/efeitos dos fármacos , Inflamação , Hepatócitos/metabolismo , Homeostase
9.
Environ Sci Pollut Res Int ; 30(2): 3562-3575, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35947263

RESUMO

As an environmentally friendly means of transport, the high-speed rail (HSR) is conducive to promoting corporate performance. An innovative approach extends the impact of HSR networks on pollution emissions from the regional level to the micro-enterprise level. Based on the quasi-natural experiment of the opening of HSR, a difference-in-difference model is used to investigate the impact of HSR on enterprise pollution emission levels and its action mechanism by using the matched data from the Chinese Enterprise Pollution Emission Database, the Chinese Industrial Enterprise Database, and the Chinese City Statistical Yearbook from 2000 to 2010. The results show that opening HSR significantly reduces the enterprises' pollution emission level, while reducing the number of polluting enterprises and transportation costs as well as improving the innovation capacity of enterprises are the corresponding action mechanisms. The impact of HSR on the enterprises' pollution emission varies with industry intensity, population size, and regional economic development level. The conclusions not only provide important insights to increase the ecological quality of China's environment through transportation infrastructure upgrades but also bring some guidance to more developing countries to improve their air environment.


Assuntos
Povo Asiático , Desenvolvimento Econômico , Humanos , China , Bases de Dados Factuais , Poluição Ambiental
10.
Cancer Res Commun ; 2(9): 1061-1074, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36506869

RESUMO

Preclinical and clinical studies have evidenced that effective targeted therapy treatment against receptor tyrosine kinases (RTKs) in different solid tumor paradigms is predicated on simultaneous inhibition of both the PI3K and MEK intracellular signaling pathways. Indeed, re-activation of either pathway results in resistance to these therapies. Recently, oncogenic phosphatase SHP2 inhibitors have been developed with some now reaching clinical trials. To expand on possible indications for SHP099, we screened over 800 cancer cell lines covering over 25 subsets of cancer. We found HNSCC was the most sensitive adult subtype of cancer to SHP099. We found that, in addition to the MEK pathway, SHP2 inhibition blocks the PI3K pathway in sensitive HNSCC, resulting in downregulation of mTORC signaling and anti-tumor effects across several HNSCC mouse models, including an HPV+ patient-derived xenograft (PDX). Importantly, we found low levels of the RTK ligand epiregulin identified HNSCCs that were sensitive to SHP2 inhibitor, and, adding exogenous epiregulin mitigated SHP099 efficacy. Mechanistically, epiregulin maintained SHP2-GAB1 complexes in the presence of SHP2 inhibition, preventing downregulation of the MEK and PI3K pathways. We demonstrate HNSCCs were highly dependent on GAB1 for their survival and knockdown of GAB1 is sufficient to block the ability of epiregulin to rescue MEK and PI3K signaling. These data connect the sensitivity of HNSCC to SHP2 inhibitors and to a broad reliance on GAB1-SHP2, revealing an important and druggable signaling axis. Overall, SHP2 inhibitors are being heavily developed and may have activity in HNSCCs, and in particular those with low levels of epiregulin.


Assuntos
Neoplasias de Cabeça e Pescoço , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Epirregulina/metabolismo , Inibidores Enzimáticos/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
11.
Cell Rep ; 40(4): 111095, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35905710

RESUMO

Reoccurring/high-risk neuroblastoma (NB) tumors have the enrichment of non-RAS/RAF mutations along the mitogen-activated protein kinase (MAPK) signaling pathway, suggesting that activation of MEK/ERK is critical for their survival. However, based on preclinical data, MEK inhibitors are unlikely to be active in NB and have demonstrated dose-limiting toxicities that limit their use. Here, we explore an alternative way to target the MAPK pathway in high-risk NB. We find that NB models are among the most sensitive among over 900 tumor-derived cell lines to the allosteric SHP2 inhibitor SHP099. Sensitivity to SHP099 in NB is greater in models with loss or low expression of the RAS GTPase activation protein (GAP) neurofibromin 1 (NF1). Furthermore, NF1 is lower in advanced and relapsed NB and NF1 loss is enriched in high-risk NB tumors regardless of MYCN status. SHP2 inhibition consistently blocks tumor growth in high-risk NB mouse models, revealing a new drug target in relapsed NB.


Assuntos
Neuroblastoma , Neurofibromina 1 , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno , Recidiva Local de Neoplasia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/patologia , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Inibidores de Proteínas Quinases/farmacologia
12.
Adv Sci (Weinh) ; 9(9): e2105239, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35098704

RESUMO

Glucose-sensing photonic crystals are promising for the significant advance of continuous glucose monitoring systems due to the naked-eye colorimetric readouts and noninvasive detection of diabetes, but the long response time hampers their practical applications. Here, for the first time probes of photonic nanochains (PNCs) are demonstrated that are capable of continuously and reversibly sensing glucose concentration ([glucose]) variation within seconds by color change without power consumption, much faster by 2-3 orders of magnitude than previous ones. They are comprised of 1D equidistant arrays of magnetic nanoparticles enveloped by tens-of-nanometer-thick phenylboronic acid-functionalized hydrogels, and fabricated by developing selective concentration polymerization of monomers in binary microheterogeneous solvents of dimethyl sulfoxide (DMSO) and H2 O. In this process, both 3-acrylamido phenylboronic acid (AAPBA) and N-2-hydroxyethyl acrylamide (HEAAm) are preferentially dissolved in the small volume of free DMSO concentrated in the vicinity of poly vinylpyrrolidone coated Fe3 O4 colloidal nanoparticles (Fe3 O4 @PVP), yielding Fe3 O4 @PVP@poly(AAPBA-co-HEAAm) PNCs after UV irradiation under magnetic field. The PNCs in phosphate buffered solution have a wavelength-shift range up to 130 nm when [glucose] changes from 0 to 20 × 10-3 m. The results can facilitate real-time glucose monitoring and provide an alternative to produce functional organic-inorganic nanostructures.


Assuntos
Automonitorização da Glicemia , Glicemia , Colorimetria/métodos , Glucose/química , Hidrogéis/química
13.
Plant Biotechnol J ; 20(1): 59-74, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465003

RESUMO

Aroma is a key grain quality trait that directly influences the market price of rice globally. Loss of function of betaine aldehyde dehydrogenase 2 (OsBADH2) affects the biosynthesis of 2-acetyl-1-pyrroline (2-AP), which is responsible for aroma in fragrant rice. The current study was aimed at creating new alleles of BADH2 using CRISPR/Cas9 gene editing technology under the genetic background of the japonica Ningjing 1 (NJ1) and indica Huang Huazhan (HHZ) varieties. Sensory evaluation and analysis using headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) showed that the grains of the four homozygous T1 lines with new alleles of BADH2 (nj1-cr BADH2 -1, nj1-cr BADH2 -2, hhz-cr BADH2 -1 and hhz-cr BADH2 -2) produced moderate fragrance and had significantly increased 2-AP content compared with wild-types. Moreover, there were no significant differences in the amylose content and gelatinization temperature among the four lines with new alleles of BADH2 to the wild-types. Thereafter, we crossed the HHZ background new alleles of BADH2 with CMS line Taonong 1A (TN1A) to produce a three-line hybrid variety B-Tao-You-Xiangzhan (BTYXZ) with increased grain aroma. The 2-AP content in grains of the improved BTYXZ-1 and BTYXZ-2 reached at 26.16 and 18.74 µg/kg, and the gel consistency of BTYXZ-1 and BTYXZ-2 increased significantly by 9.1% and 6.5%, respectively, compared with the wild-type Tao-You-Xiangzhan (TYXZ). However, the γ-aminobutyric acid (GABA) content in the improved three-line hybrid rice BTYXZ-1 (5.6 mg/100 g) and BTYXZ-2 (10.7 mg/100 g) was significantly lower than that of the TYXZ. These results demonstrated that CRISPR/Cas9 gene editing technology could be successfully utilized in improving aroma in non-fragrant japonica and indica varieties. In addition, the newly developed BADH2 alleles provided important genetic resources for grain aroma improvement in three-line hybrid rice.


Assuntos
Oryza , Alelos , Betaína-Aldeído Desidrogenase/genética , Grão Comestível/genética , Odorantes , Oryza/genética , Fenótipo
14.
Environ Sci Pollut Res Int ; 29(3): 4722-4735, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34409537

RESUMO

This study investigates economic convergence and sustainable development in Africa. By introducing an aggregate production technology and directional distance function, it examines the productivity growth of 28 African economies from 1990 to 2019. The proposed approach considers all decision-making units (countries) as a whole, and the productivity gains are then estimated under a nonparametric framework. In the empirical analysis, the carbon emissions are included in the Luenberger productivity measurement, called green productivity. The results show that the annual average growth rate of green productivity is 1.51% in African, and different types of club convergence for green productivity indicator and its decomposition are observed during the sample period. The decomposition of the Luenberger indicator shows that green African growth is mainly driven by technological progress, not efficiency change. Furthermore, the overall inefficiency is decomposed into technical and structural effects. The latter measure the potential improvement in terms of resource reallocation. Structural inefficiency is larger than technical inefficiency, suggesting that African countries could improve their economic and environmental performances by optimizing input/output mixes.


Assuntos
Eficiência , Desenvolvimento Sustentável , África , Carbono , China , Desenvolvimento Econômico , Tecnologia
15.
PNAS Nexus ; 1(5): pgac232, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36712364

RESUMO

Triple negative breast cancer (TNBC) accounts for over 30% of all breast cancer (BC)-related deaths, despite accounting for only 10% to 15% of total BC cases. Targeted therapy development has largely stalled in TNBC, underlined by a lack of traditionally druggable addictions like receptor tyrosine kinases (RTKs). Here, through full genome CRISPR/Cas9 screening of TNBC models, we have uncovered the sensitivity of TNBCs to the depletion of the ubiquitin-like modifier activating enzyme 1 (UBA1). Targeting UBA1 with the first-in-class UBA1 inhibitor TAK-243 induced unresolvable endoplasmic reticulum (ER)-stress and activating transcription factor 4 (ATF4)-mediated upregulation of proapoptotic NOXA, leading to cell death. c-MYC expression correlates with TAK-243 sensitivity and cooperates with TAK-243 to induce a stress response and cell death. Importantly, there was an order of magnitude greater sensitivity of TNBC lines to TAK-243 compared to normal tissue-derived cells. In five patient derived xenograft models (PDXs) of TNBC, TAK-243 therapy led to tumor inhibition or frank tumor regression. Moreover, in an intracardiac metastatic model of TNBC, TAK-243 markedly reduced metastatic burden, indicating UBA1 is a potential new target in TNBC expressing high levels of c-MYC.

16.
Front Immunol ; 12: 713960, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367182

RESUMO

Antibiotic resistance has been considered to be a global threat which underscores the need to develop novel anti-infective therapeutics. Modulation of innate immunity by synthetic peptides is an attractive strategy to overcome this circumstance. We recently reported that BCCY-1, a human ß-casein-derived peptide displays regulatory activities on monocytes, thereby enhancing their actions in innate immune responses. However, the function of peptide BCCY-1 in host defense against infection remains unknown. In this study, we investigated the in vivo characteristics and effects of peptide BCCY-1 in mouse models of bacterial infection. Following intraperitoneal injection, the peptide BCCY-1 exhibited high level of cellular uptake by monocytes without obvious toxicities. Results revealed that peptide BCCY-1, but not the scrambled version, stimulated the chemokine production and monocyte recruitment in vivo. Treatment with BCCY-1 enhanced the pathogen clearance and protected mice against lethal infections. Because the anti-infective effects of BCCY-1 was abolished by in vivo depletion of monocytes/macrophages rather than lymphocytes and granulocytes, we conclude that monocytes/macrophages are key effector cells in BCCY-1-mediated anti-infective protection. Additionally, BCCY-1 lacks direct antimicrobial activity. To our knowledge, a human ß-casein-derived peptide that counters infection by selective regulation of innate immunity has not been reported previously. These results suggest peptide BCCY-1 as a promising alternative approach and a valuable complement to current anti-infective strategy.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Fatores Imunológicos/farmacologia , Imunomodulação/efeitos dos fármacos , Fragmentos de Peptídeos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Biomarcadores , Caseínas/química , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Fatores Imunológicos/química , Masculino , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Distribuição Tecidual
17.
Mol Cancer Ther ; 20(8): 1400-1411, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088831

RESUMO

Venetoclax is a small molecule inhibitor of the prosurvival protein BCL-2 that has gained market approval in BCL-2-dependent hematologic cancers including chronic lymphocytic leukemia and acute myeloid leukemia. Neuroblastoma is a heterogenous pediatric cancer with a 5-year survival rate of less than 50% for high-risk patients, which includes nearly all cases with amplified MYCN We previously demonstrated that venetoclax is active in MYCN-amplified neuroblastoma but has limited single-agent activity in most models, presumably the result of other pro-survival BCL-2 family protein expression or insufficient prodeath protein mobilization. As the relative tolerability of venetoclax makes it amenable to combining with other therapies, we evaluated the sensitivity of MYCN-amplified neuroblastoma models to rational combinations of venetoclax with agents that have both mechanistic complementarity and active clinical programs. First, the MDM2 inhibitor NVP-CGM097 increases the prodeath BH3-only protein NOXA to sensitize p53-wild-type, MYCN-amplified neuroblastomas to venetoclax. Second, the MCL-1 inhibitor S63845 sensitizes MYCN-amplified neuroblastoma through neutralization of MCL-1, inducing synergistic cell killing when combined with venetoclax. Finally, the standard-of-care drug cocktail cyclophosphamide and topotecan reduces the apoptotic threshold of neuroblastoma, thus setting the stage for robust combination efficacy with venetoclax. In all cases, these rational combinations translated to in vivo tumor regressions in MYCN-amplified patient-derived xenograft models. Venetoclax is currently being evaluated in pediatric patients in the clinic, including neuroblastoma (NCT03236857). Although establishment of safety is still ongoing, the data disclosed herein indicate rational and clinically actionable combination strategies that could potentiate the activity of venetoclax in patients with amplified MYCN with neuroblastoma.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , Animais , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Proliferação de Células , Ciclofosfamida/administração & dosagem , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Sulfonamidas/administração & dosagem , Topotecan/administração & dosagem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cancer Res ; 81(7): 1896-1908, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33483374

RESUMO

MYCN is amplified in 20% to 25% of neuroblastoma, and MYCN-amplified neuroblastoma contributes to a large percent of pediatric cancer-related deaths. Therapy improvements for this subtype of cancer are a high priority. Here we uncover a MYCN-dependent therapeutic vulnerability in neuroblastoma. Namely, amplified MYCN rewires the cell through expression of key receptors, ultimately enhancing iron influx through increased expression of the iron import transferrin receptor 1. Accumulating iron causes reactive oxygen species (ROS) production, and MYCN-amplified neuroblastomas show enhanced reliance on the system Xc- cystine/glutamate antiporter for ROS detoxification through increased transcription of this receptor. This dependence creates a marked vulnerability to targeting the system Xc-/glutathione (GSH) pathway with ferroptosis inducers. This reliance can be exploited through therapy with FDA-approved rheumatoid arthritis drugs sulfasalazine (SAS) and auranofin: in MYCN-amplified, patient-derived xenograft models, both therapies blocked growth and induced ferroptosis. SAS and auranofin activity was largely mitigated by the ferroptosis inhibitor ferrostatin-1, antioxidants like N-acetyl-L-cysteine, or by the iron scavenger deferoxamine (DFO). DFO reduced auranofin-induced ROS, further linking increased iron capture in MYCN-amplified neuroblastoma to a therapeutic vulnerability to ROS-inducing drugs. These data uncover an oncogene vulnerability to ferroptosis caused by increased iron accumulation and subsequent reliance on the system Xc-/GSH pathway. SIGNIFICANCE: This study shows how MYCN increases intracellular iron levels and subsequent GSH pathway activity and demonstrates the antitumor activity of FDA-approved SAS and auranofin in patient-derived xenograft models of MYCN-amplified neuroblastoma.


Assuntos
Ferro/farmacologia , Neuroblastoma/tratamento farmacológico , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/antagonistas & inibidores , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Auranofina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Criança , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Amplificação de Genes , Regulação Enzimológica da Expressão Gênica/fisiologia , Glutationa/metabolismo , Humanos , Ferro/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Oxazóis/farmacologia , Oxazóis/uso terapêutico , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Sulfassalazina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Food Chem ; 348: 129111, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516994

RESUMO

In this study, we report a novel peptide corresponding to the sequence of human ß-casein (named BCCY-1), which was identified in our previous peptidome analysis of human milk and has great immunomodulatory activity. The results revealed that peptide BCCY-1, but not the scrambled version, enhanced monocyte migration without obvious toxicities. This selective effect was mediated via increased production of chemokines by peptide stimulated monocytes. Moreover, BCCY-1 exerted its modulatory effects by activating nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling. The abundances of peptide BCCY-1 and the peptides partially encompassing its fragment were found to be lower in preterm milk than in term milk. Our study may lead to new insights into the immunoregulatory effects of casein-derived peptides and facilitate the discovery of novel peptide-based food and pharmaceutical products.


Assuntos
Caseínas/química , Imunidade Inata/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Caseínas/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Leite Humano/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NF-kappa B/metabolismo , Peptídeos/química
20.
J Endocrinol ; 248(2): 249-264, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33295883

RESUMO

Polycystic ovarian syndrome (PCOS) is a major severe ovary disorder affecting 5-10% of reproductive women around the world. PCOS can be considered a metabolic disease because it is often accompanied by obesity and diabetes. Brown adipose tissue (BAT) contains abundant mitochondria and adipokines and has been proven to be effective for treating various metabolic diseases. Recently, allotransplanted BAT successfully recovered the ovarian function of PCOS rat. However, BAT allotransplantation could not be applied to human PCOS; the most potent BAT is from infants, so voluntary donors are almost inaccessible. We recently reported that single BAT xenotransplantation significantly prolonged the fertility of aging mice and did not cause obvious immunorejection. However, PCOS individuals have distinct physiologies from aging mice; thus, it remains essential to study whether xenotransplanted rat BAT can be used for treating PCOS mice. In this study, rat-to-mouse BAT xenotransplantation, fortunately, did not cause severe rejection reaction, and significantly recovered ovarian functions, indicated by the recovery of fertility, oocyte quality, and the levels of multiple essential genes and kinases. Besides, the blood biochemical index, glucose resistance, and insulin resistance were improved. Moreover, transcriptome analysis showed that the recovered PCOS F0 mother following BAT xenotransplantation could also benefit the F1 generation. Finally, BAT xenotransplantation corrected characteristic gene expression abnormalities found in the ovaries of human PCOS patients. These findings suggest that BAT xenotransplantation could be a novel therapeutic strategy for treating PCOS patients.


Assuntos
Tecido Adiposo Marrom/transplante , Infertilidade Feminina/cirurgia , Ovário/metabolismo , Síndrome do Ovário Policístico/cirurgia , Animais , Feminino , Fertilidade , Humanos , Infertilidade Feminina/sangue , Camundongos Endogâmicos BALB C , Oócitos/citologia , Síndrome do Ovário Policístico/sangue , Ratos Sprague-Dawley , Transcriptoma , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...